Сколько нефронов в почке


Почка является главным органом мочевыделительной системы, таким себе природным фильтром, очищающим кровь человека. В норме у человека должно быть две почки, но бывают и аномалии: одна или три почки. Почки располагаются в брюшной полости по обе стороны позвоночника (на расстоянии около 10 см друг от друга) примерно на уровне поясницы.

Нормальное положение почек обеспечивается ее фиксирующим аппаратом, в который входят: почечное ложе, почечная ножка, оболочки почки. Большую роль в удерживании почки в нормальном положении играют мышцы брюшного пресса, создающие внутрибрюшное давление.

Строение почки

Снаружи почка покрыта тонкой фиброзной капсулой, которая легко отделяется от вещества почки. Кнаружи от фиброзной капсулы расположена жировая капсула, которая имеет довольно значительную толщину (особенно на задней поверхности почки, где образуется своеобразная жировая подушка — околопочечное жировое тело). При уменьшении толщины жировой капсулы почка становится подвижной (блуждающая почка) — об этом надо знать, если вы хотите сильно похудеть.


Кнаружи от жировой капсулы почка охватывается почечной фасцией, состоящей из двух лепестков: предпочечного и позадипочечного. Почечная фасция при помощи тяжей волокнистой соединительной ткани, пронизывающей жировую капсулу, соединяется с фиброзной капсулой почки.

Размеры здоровой почки колеблются в пределах:

  • ширина: 10-12 см;
  • длина: 5-6 см;
  • толщина: около 4 см;
  • вес почки: 120-200 г.

Внутри почка неоднородна. Почка покрыта поверхностным слоем (0,4-0,7 см), за которым идет глубокий слой (2-2,5 см). Глубокий слой в свою очередь состоит из участков, имеющих форму пирамид. Поверхностный слой образует корковое вещество почки темно-красного цвета, которое состоит из почечных телец, проксимальных и дистальных канальцев нефронов. Глубокий слой почки имеет более светлый красноватый цвет и состоит из мозгового вещества, в котором располагаются нефроны, собирательные трубочки и сосочковые канальцы.

Корковое вещество почки состоит из чередующихся светлых и темных участков. Светлые участки в виде лучей отходят от мозгового вещества в корковое. Лучи мозгового вещества образуют лучистую часть, в которой находятся начальные отделы собирательных трубочек и прямые почечные канальцы (которые затем продолжаются в мозговое вещество почки). Темные участки называются свернутой частью, в которой располагаются почечные тельца, проксимальные и дистальные отделы почечных канальцев.


Мозговое вещество почки в разрезе имеет вид треугольных участков (почечных пирамид), разделенных между собой почечными столбами, в которых проходят кровеносные сосуды, питающие почку.

Строение почки

  1. корковое вещество почки;
  2. мозговое вещество почки;
  3. почечные сосочки;
  4. почечный столб;
  5. основание почечной пирамиды;
  6. решетчатое поле;
  7. малые почечные чашки;
  8. лучистая часть;
  9. свернутая часть;
  10. фиброзная капсула;
  11. мочеточник;
  12. большая почечная чашка;
  13. почечная лоханка;
  14. почечная вена;
  15. почечная артерия.

Каждая почечная пирамида имеет широкое основание (обращенное к корковому веществу) и узкую верхушку (почечный сосочек), которая направлена в сторону почечной пазухи. В почечной пирамиде проходят прямые канальцы и собирательные трубочки, которые постепенно сливаются друг с другом и образуют 15-20 сосочковых протоков в области почечного сосочка. Сосочковые протоки открываются сосочковыми отверстиями в малые почечные чашки на поверхности сосочка. Таким образом вершина почечного сосочка напоминает своеобразную решетку и называется решетчатым полем.


Почечное тельце и нефрон

Структурно-функциональной единицей почки является нефрон, который состоит из капсулы клубочка (капсула Шумлянского-Боумена) и канальцев. Капсула по своей форме похожа на бокал и охватывает клубочковую капиллярную сеть, в результате чего формирутеся почечное тельце. Затем капсула клубочка продолжается в проксимальный извитой каналец, который впадает в собирательную почечную трубочку, которые в свою очередь продолжаются в сосочковые протоки.

Одна почка содержит порядка миллиона нефронов. Длина канальцев нефрона колеблется от 2 до 5 см, а общая длина всех канальцев в двух почках составляет более 100 км.

Строение почечного тельца

строение почечного тельца
 

  1. приносящая клубочковая артериола;
  2. выносящая клубочковая артериола;
  3. сеть клубочковых капилляров;
  4. полость капсулы клубочка;
  5. проксимальный извитой каналец;
  6. наружная стенка капсулы клубочка;
  7. внутренняя стенка капсулы клубочка.

Строение нефрона

строение нефрона

  1. почечное тельце;
  2. проксимальный извитой каналец;
  3. собирательная трубочка;
  4. дистальный извитой каналец;
  5. околоканальцевая капиллярная сеть;
  6. петля нефрона;
  7. дугообразная вена;
  8. дугообразная артерия;
  9. междольковая артерия;
  10. приносящая клубочковая артериола;
  11. выносящая клубочковая артериола.

Процесс мочеобразования

процесс мочеобразования

Процесс образования мочи заключается в следующем. По артериям в почки под давлением поступает кровь, которую нужно очистить от продуктов жизнедеятельности. Главная задача клубочков заключается в удалении шлаков, не допуская при этом потери полезных веществ, содержащихся в фильтруемой крови. Через стенки капилляров (маленьких пор) почечных клубочков фильтруется плазма крови, образуя первичную мочу (при этом не фильтруются клетки крови и большинство крупных молекул, например, белки). При прохождении первичной мочи по почечным канальцам большая часть воды и часть растворенных в ней веществ всасываются обратно в кровь (процесс реабсорбции), в результате чего образуется конечная (концентрированная) моча, выводимая из организма. За сутки через почечные клубочки проходит до 2000 литров крови из которой выделяется порядка 170 литров первичной мочи, из которой образуется порядка 1,5-2 литров концентрированной мочи, которая и выводится из организма (остальная часть первичной мочи обратно всасывается в кровь).

Образовавшаяся в почках моча по мочеточникам поступает в мочевой пузырь (полый орган, который может растягиваться, вмещая до 500 мл мочи), в котором накапливается, а затем через мочеиспускательный канал выводится из организма.


четочники являются специальными мышечными каналами, которые сокращаясь, проталкивают мочу в направлении мочевого пузыря. В месте, где мочеточники соединяются с мочевым пузырем находится сфинктер, который препятствует обратному току мочи из мочевого пузыря в мочеточник. Когда мочевой пузырь наполняется в головной мозг подается соответствующий сигнал, вызывающий позыв к мочеиспусканию. При мочеиспускании открывается другой сфинктер — между мочевым пузырем и мочеиспускательным каналом, и под давлением, создаваемым сокращением стенок мочевого пузыря и брюшного пресса, моча выводится из организма.

Количество образуемой в течение суток мочи зависит от многих факторов:

  • количества выпитой жидкости;
  • качества и количества съеденной пищи (чем больше белка, тем больше выделяется мочи);
  • времени суток (ночью процесс мочевыделения замедляется);
  • активной трудовой деятельности (при тяжелом физическом труде мочеобразование снижается).

Кроме очистки крови, почки поддерживают в крови стабильный уровень натрия. В течение месяца почки способны покрывать дефицит соли. Кроме того, почки участвуют в синтезе некоторых аминокислот, а также в превращении витамина D в его активную форму — витамин D3, который контролирует всасывание кальция из желудочно-кишечного тракта.

diabet-gipertonia.ru

Немного об анатомии почки


Для того, чтобы перейти к мельчайшим единицам почки, нужно разобрать общее ее строение. Если рассмотреть почку в разрезе, то по своей форме она напоминает боб или фасоль.

Человек рождается с двумя почками, но, правда, бывают исключения, когда присутствует всего одна почка. Расположены они у задней стенки брюшины, на уровне I и II поясничных позвонков.

Весит каждая почка примерно 110-170 грамм, ее длина составляет 10-15 см, ширина — 5-9 см, а толщина – 2-4 см.

Почка имеет заднюю и переднюю поверхности. Задняя поверхность располагается в почечном ложе. Это напоминает большую и мягкую кровать, которая выстелена поясничной мышцей. А вот передняя поверхность соприкасается с другими соседними органами.

Левая почка контактирует с левым надпочечником, ободочной кишкой, желудком и поджелудочной железой, а правая сообщается с правым надпочечником, толстым и тонким кишечником.

Ведущие структурные компоненты почки:

  • Почечная капсула – это ее оболочка. Она включает в себя три слоя. Фиброзная капсула почки — по своей толщине довольно неплотная, имеет очень прочное строение. Защищает почку от различных повреждающих воздействий. Жировая капсула – слой жировой ткани, которая по своей структуре нежная, мягкая и рыхлая. Предохраняет почку от сотрясений и ударов. Наружная капсула – почечная фасция. Состоит из тонкой соединительной ткани.
  • Паренхима почки – ткань, которая состоит из нескольких слоев: коркового и мозгового вещества. Последнее складывается из 6-14 почечных пирамид. А вот сами пирамидки формируются из собирательных канальцев. В корковом веществе располагаются нефроны. Эти слои четко различимы по цвету.

  • Лоханка почки – углубление, похожее на воронку, которое получает мочу от нефронов. Состоит она из чашечек разного калибра. Самые маленькие – это чашечки I порядка, в них проникает моча из паренхимы. Соединяясь, маленькие чашечки, образуют более крупные – чашечки II порядка. Насчитывают таких чашечек в почке около трех. При слиянии этих трех чашечек образуется почечная лоханка.
  • Почечная артерия – крупный кровеносный сосуд, ответвляясь от аорты, он доставляет зашлакованную кровь в почку. Примерно 25% всей крови поступает ежеминутно в почки для очищения. В течение дня почечная артерия снабжает почку примерно 200 литрами крови.
  • Почечная вена – по ней уже очищенная кровь из почки попадает в полую вену.

Функции почек

  1. Выделительная функция – это формирование мочи, которая выводит из организма отходы его жизнедеятельности.

  2. Гомеостатическая функция – почки поддерживают постоянный состав и свойства нашей внутренней среды организма. Они обеспечивают нормальную работу водно-солевого и электролитного балансов, а также держат на нормальном уровне осмотическое давление.
  3. Вносят большой вклад в координирование значений артериального давления человека. Изменяя механизмы и объемы выделяемой воды из организма, а также натрия и хлорида, они поддерживают постоянность артериального давления. А секретируя несколько видов полезных веществ, почки регулируют значение АД.
  4. Инкреторная функция. Почки способны создавать многие биологически активные вещества, поддерживающие оптимальную жизнедеятельность человека. Секретируют они:

  • ренин – регулирует артериальное давление, изменяя уровни калия и объем жидкости в организме
  • брадикинин – расширяет кровеносные сосуды, следовательно, он снижает артериальное давление
  • простагландины – также расширяют сосуды крови
  • урокиназу – вызывает лизис тромбов, которые могут образовываться у здоровых людей в любой части кровеносного русла
  • эритропоэтин – этот фермент регулирует образование красных кровяных клеток — эритроцитов
  • кальцитриол – активная форма витамина Д, он регулирует обмен кальция и фосфата в организме человека

Что же такое нефрон

Это главная составляющая наших почек. Они не только образуют структуру почки, но и выполняют некоторые функции. В каждой почке их количество достигает одного миллиона, точное значение колеблется от 800 тысяч до 1,2 миллиона.

Современные ученые пришли к выводу, что при нормальных условиях не все нефроны выполняют свои функции, только 35% из них работает. Это связано с резервной функцией организма, чтобы на случай какой-то экстренной ситуации почки продолжали функционировать и очищать наш организм.

Количество нефронов меняется в зависимости от возраста, а именно при старении человек теряет их некоторое количество. Как показывают исследования, то примерно 1% каждый год. Начинается этот процесс после 40 лет, а возникает из-за отсутствия способности регенерации у нефронов.


По подсчетам к 80 годам человек теряет около 40% нефронов, но это незначительно влияет на функции почек. Но вот при потере более 75%, например, при алкоголизме, травмах, хронических заболеваниях почек может развиться серьезное заболевание – почечная недостаточность.

Длина нефрона колеблется от 2 до 5 см. Если вытянуть все нефроны в одну линию, то их длина составит примерно 100 км!

Из чего состоит нефрон

Каждый нефрон покрыт небольшой капсулой, которая похожа на двустенную чашу (капсула Шумлянского – Боумена, названа в честь русского и английского ученых, которые ее открыли и изучили). Внутренняя стенка этой капсулы является фильтром, который постоянно очищает нашу кровь.

Состоит этот фильтр из базальной мембраны и 2 слоев покровных (эпителиальных) клеток. В этой мембране тоже 2 слоя покровных клеток, причем наружный слой – это клетки сосудов, а внешний – клетки мочевого пространства.

Все эти слои имеют внутри себя специальные поры. Начиная от внешних слоев базальной мембраны, диаметр этих пор уменьшается. Так и создается фильтрующий аппарат.

Между ее стенками возникает щелевидное пространство, именно оттуда берут свое начало почечные канальцы. Внутри капсулы находится капиллярный клубочек, он образуется из-за многочисленных ветвлений почечной артерии.


Капиллярный клубочек называют еще мальпигиевым тельцем. Открыл их итальянский ученый М. Мальпиги в 17 веке. Погружен он в гелеобразное вещество, которое выделяется специальными клетками – мезаглиоцитами. А самое вещество именуется, как мезангий.

Это вещество защищает капилляры от непреднамеренных разрывов из-за высокого давления внутри них. А если все-таки произошло повреждение, то в гелеобразном веществе находятся необходимые материалы, которые заделают эти повреждения.

От токсических веществ микроорганизмов также защитит вещество, выделяемое мезаглиоцитами. Оно просто их сразу же уничтожит. Более того этими специфичными клетками вырабатывается особый почечный гормон.

Каналец, выходящий из капсулы, именуется извитым канальцем I порядка. Он правда не ровный, а извитой. Проходя по мозговому слою почки, этот каналец формирует петлю Генле и вновь поворачивается в сторону коркового слоя. На своем пути извитой каналец делает несколько витков и в обязательном порядке соприкасается с основанием клубочка.

В корковом слое образуется каналец II порядка, он вливается в собирательную трубочку. Небольшое количество собирательных трубочек, соединяясь вместе, объединяются в выводные протоки, переходящие в почечную лоханку. Именно эти трубочки, двигаясь к мозговому веществу, формируют мозговые лучи.

Типы нефронов

Выделяют эти типы из-за специфичности местонахождения клубочков в коре почек, структуры канальцев и особенностей состава и локализации кровеносных сосудов. К ним относят:

  • корковые – занимают примерно 85% от общего числа всех нефронов
  • юкстамедуллярные – 15% из всего количества

Корковые нефроны самые многочисленные и тоже имеют внутри себя классификацию:

  1. Суперфициальные или их еще называют поверхностными. Главная особенность их в расположении почечных тел. Они находятся во внешнем слое коркового вещества почки. Их количество примерно 25%.
  2. Интракортикальные. У них мальпигиевые тельца располагаются в средней части коркового вещества. Преобладают по численности — 60% всех нефронов.

Корковые нефроны имеют сравнительно укороченную петлю Генле. Из-за своих маленьких размеров она способна проникнуть только во внешнюю часть мозгового вещества почек.

Образование первичной мочи — вот главная функция таких нефронов.

У юкстамедуллярных нефронов мальпигиевые тельца обнаруживаются в основании коркового вещества, находятся практически на линии начала мозгового слоя. Петля Генле у них более продолжительна, чем у корковых, она инфильтрируется настолько глубоко в мозговой слой, что достигает вершин пирамид.

Эти нефроны в мозговом веществе формируют высокое осмотическое давление, которое необходимо, чтобы происходило сгущение (увеличение концентрации), и сокращение объемов конечной мочи.

Функция нефронов

Функция их заключается в образовании мочи. Процесс этот стадийный и состоит из 3 фаз:

  • фильтрация
  • реабсорбция
  • секреция

В начальную фазу формируется первичная моча. В капиллярных клубочках нефрона плазма крови очищается (ультрафильтруется). Совершается очищение плазмы из-за разности давления в клубочке (65 мм рт. ст.) и в оболочке нефрона (45 мм рт. ст.).

Около 200 л первичной мочи образуется в организме человека за сутки. Эта моча имеет схожий с плазмой крови состав.

Во вторую фазу – реабсорбции происходит повторное поглощение нужных для организма веществ из первичной мочи. В эти вещества входят: витамины, вода, различные полезные соли, растворенные аминокислоты и глюкоза. Происходит это в проксимальных извитых канальцах. Внутри которых находится большое количество ворсинок, они увеличивают площадь и скорость всасывания.

Из 150 л первичной мочи образуется всего 2 л вторичной мочи. В ней отсутствуют важные питательные вещества для организма, но сильно увеличивается концентрация токсичных веществ: мочевины, мочевой кислоты.

Третья фаза характеризуется выделением вредных веществ в мочу, которые не прошли почечный фильтр: антибиотики, различные красители, лекарственные средства, яды.

Структура нефрона очень сложная, несмотря на его маленькие размеры. Удивительно, но практически каждая составляющая нефрона выполняет свою функцию.

vselekari.com

Структурно-функциональной единицей почки является нефрон, состоящий из сосудистого клубочка, его капсулы (почечное тельце) и системы канальцев, ведущих в собирательные трубки (рис.3). Последние морфологически не относятся к нефрону.

Рисунок 3. Схема строения нефрона (8).

В каждой почке человека имеется около 1 млн. нефронов, с возрастом их количество постепенно уменьшается. Клубочки расположены в корковом слое почки, из них 1/10-1/15 часть находятся на границе с мозговым слоем и называются юкстамедуллярными. Они имеют длинные петли Генле, углубляющиеся в мозговое вещество и способствующие более эффективной концентрации первичной мочи. У детей грудного возраста клубочки имеют малый диаметр и их общая фильтрующая поверхность значительно меньше, чем у взрослых. 

Строение почечного клубочка

Клубочек покрыт висцеральным эпителием (подоцитами), который у сосудистого полюса клубочка  переходит в париетальный эпителий капсулы Боумена. Боуменово (мочевое) пространство непосредственно переходит в просвет проксимального извитого канальца. Кровь поступает в сосудистый полюс клубочка через афферентную (приносящую) артериолу и, после прохождения по петлям капилляров клубочка, покидает его по эфферентной (выносящей) артериоле, имеющей меньший просвет. Сжатие выносящей артериолы увеличивает гидростатическое давление в клубочке, что способствует фильтрации. Внутри клубочка афферентная артериола подразделяется на несколько ветвей, которые в свою очередь дают начало капиллярам нескольких долек (рис. 4А). В клубочке имеется около 50 капиллярных петель, между которыми были найдены анастомозы, позволяющие функционировать клубочку как «диализирующая система». Стенка капилляра клубочка представляет собой тройной фильтр, включающий фенестрированный эндотелий, гломерулярную базальную мембрану и щелевые диафрагмы между ножками подоцитов (рис.4Б).

А                     Б

Рисунок 4. Строение клубочка (9).

А – клубочек, АА – афферентная артериола (электронная микроскопия).

Б – схема строения капиллярной петли клубочка.

Прохождение молекул через фильтрационный барьер зависит от их размера и электрического заряда. Вещества с молекулярным весом >50.000 Да почти не фильтруются. Из-за отрицательного заряда в нормальных структурах клубочкового барьера анионы задерживаются в большей степени, чем катионы. Эндотелиальные клетки имеют поры или фенестры диаметром около 70 нм. Поры окружены гликопротеидами, имеющими отрицательный заряд, представляют своеобразное сито, через которые происходит ультрафильтрация плазмы, но задерживаются форменные элементы крови. Гломерулярная базальная мембрана (ГБМ) представляет непрерывный барьер между кровью и полостью капсулы, и у взрослого человека имеет толщину 300-390 нм (у детей тоньше – 150-250 нм) (рис. 5). ГБМ так же содержит большое количество отрицательно заряженных гликопротеидов. Она состоит из трех слоев: а) lamina rara externa; б) lamina densa и в) lamina rara interna. Важной структурной частью ГБМ является коллаген IV типа. У детей с наследственным нефритом, клинически проявляющимся гематурией, выявляются мутации коллагена IV типа. Патология ГБМ устанавливается электронно-микроскопическим исследованием биоптата почек.

Рисунок 5. Стенка капилляра клубочка – гломерулярный фильтр (9).

Снизу расположен фенестрированный эндотелий, над ним – ГБМ, на которой отчетливо видны регулярно расположенные ножки подоцитов (электронная микроскопия).

Висцеральные эпителиальные клетки клубочка, подоциты, поддерживают архитектуру клубочка, препятствуют прохождению белка в мочевое пространство, а также синтезируют ГБМ. Это высокоспециализированные клетки мезенхимального происхождения. От тела подоцитов отходят длинные первичные отростки (трабекулы), концы которых имеют «ножки», прикрепленные к ГБМ. Малые отростки (педикулы) отходят от больших почти перпендикулярно и закрывают собой свободное от больших отростков пространство капилляра (рис. 6А). Между соседними ножками подоцитов натянута фильтрационная мембрана – щелевая диафрагма, которая в последние десятилетия представляет собой  предмет многочисленных исследований (рис. 6Б).

А

Б

Рисунок 6. Строение подоцита (9).

А – ножки подоцитов полностью покрывают ГБМ (электронная микроскопия).

Б – схема фильтрационного барьера.

Щелевые диафрагмы состоят из белка нефрина, который тесно связан в структурном и функциональном отношениях со множеством других белковых молекул: подоцином, СД2АР, альфа-актинином-4 и др. В настоящее время установлены мутации генов, кодирующих белки подоцитов. Например, дефекта гена NРНS1 приводит к отсутствию нефрина, что имеет место при врожденном нефротическом синдроме финского типа. Повреждения подоцитов вследствие воздействия вирусных инфекций, токсинов, иммунологических факторов, а также генетических мутаций могут привести к протеинурии и развитию нефротического синдрома, морфологическим эквивалентом которого независимо от причины является расплавление ножек подоцитов. Наиболее частым вариантом нефротического синдрома у детей является идиопатический нефротический синдром с минимальными изменениями.

В состав клубочка входят так же мезангиальные клетки, основная функция которых – обеспечение механической фиксации капиллярных петель. Мезангиальные клетки обладают сократительной способностью, влияя на клубочковый кровоток, а так же фагоцитарной активностью (Рис. 4Б).

Почечные канальцы

Первичная моча попадает в проксимальные почечные канальцы и подвергается там качественным и количественным изменениям за счет секреции и реабсорбции веществ. Проксимальные канальцы – самый длинный сегмент нефрона, в начале он сильно изогнут, а при переходе в петлю Генле выпрямляется. Клетки проксимального канальца (продолжение париетального эпителия капсулы клубочка) цилиндрической формы, со стороны просвета покрыты микроворсинками («щеточная кайма”). Микроворсинки увеличивают рабочую поверхность эпителиальных клеток, обладающих высокой энзиматической активностью. Они содержат много митохондрий, рибосом и лизосом. Здесь происходит активная реабсорбция многих веществ (глюкозы, аминокислот, ионов натрия, калия, кальция и фосфатов). В проксимальные канальцы поступает примерно 180 л клубочкового ультрафильтрата, а 65-80% воды и натрия реабсорбируется обратно. Таким образом, в результате этого значительно уменьшается объем первичной мочи без изменения ее концентрации. Петля Генле. Прямая часть проксимального канальца, переходит в нисходящее колено петли Генле. Форма эпителиальных клеток становится менее вытянутой, уменьшается число микроворсинок. Восходящий отдел петли имеет тонкую и толстую части и заканчивается в плотном пятне. Клетки стенок толстых сегментов петли Генле крупные, содержат много митохондрий, которые генерируют энергию для активного транспорта ионов натрия и хлора. Основной ионный переносчик этих клеток – NKCC2 ингибируется фуросемидом. Юкстагломерулярный аппарат (ЮГА) включает 3 типа клеток: клетки дистального канальцевого эпителия на примыкающей к клубочку стороне (плотное пятно), экстрагломеруллярные мезангиальные клетки и гранулярные клетки в стенках афферентных артериол, продуцирующие ренин. (Рис. 7).

Дистальный каналец. За плотным пятном (macula densa) начинается дистальный каналец, переходящий в собирательную трубку. В дистальных канальцах всасывается около 5% Na первичной мочи. Переносчик ингибируется диуретиками из группы тиазидов. Собирательные трубки имеют три отдела: кортикальный, наружный и внутренний медуллярный. Внутренние медуллярные участки собирательной трубки впадают в сосочковый проток, открывающийся в малую чашечку. Собирательные трубки содержат два типа клеток: основные («светлые») и вставочные («темные»). По мере перехода кортикального отдела трубки в медуллярный уменьшается число вставочных клеток. Основные клетки содержат натриевые каналы, работа которых ингибируется диуретиками амилоридом, триамтереном. Во вставочных клетках нет Na+/K+-АТФазы, но содержатся Н+-АТФаза. В них осуществляется секреция Н+ и реабсорбция Сl. Таким образом, в собирательных трубках осуществляется конечный этап обратного всасывания NaCl перед выходом мочи из почек.

Интерстициальные клетки почек. В корковом слое почек интерстиций выражен слабо, тогда как в мозговом слое он более заметен. Корковое вещество почек содержит два типа интерстициальных клеток – фагоцитирующие и фибробластоподобные. Фибробластоподобные интерстициальные клетки продуцируют эритропоэтин. В мозговом веществе почек имеется три типа клеток. В цитоплазме клеток одного из этих типов содержатся мелкие липидные клетки, служащие исходным материалом для синтеза простагландинов.



biofile.ru

Энергетические вещества тканей почки

ПОЧКИ - важнейшие парные органы выделения позвоночных животных и человека, участвующие в водно-солевом гомеостазе, т. е. в поддержании постоянства концентрации осмотически активных веществ в жидкостях внутренней среды, постоянства объёма этих жидкостоей, их ионного состава и кистлотно-щелочного равновесия. Через почки выводятся из организма конечные продукты азотистого обмена, чужеродные и токсические соединения, избыток органических и неорганических веществ. Почки участвуют в метаболизме углеводов и белков, в образовании биологически активных веществ, регулирующих уровень артериального давления, скорость секреции альдостерона надочечниками и скорость образования эритроцитов.  1.1. Анатомо-морфологическая характеристика тканей почки   Строение почек. У человека почки - парные бобовидные органы, расположенные на задней брюшной стенке по обеим сторонам позвоночника обычно на уровне 12-го грудного - 3-го поясничного позвонков. Одна почка расположена выше другой приблизительно на 2-3 см. Известны аномалии развития, когда имеется 1 или 3 почки. У взрослого человека каждая почка весит 120-200 г, её длина 10-12 см, ширина 5-6 см, толщина 3-4 см. Передняя поверхность почки покрыта брюшиной, но сама почка находится вне брюшинной полости. Почки окружены фасцией, под которой находится жировая капсула; непосредственно паренхима почек окружена фиброзной капсулой. Почка имеет гладкий выпуклый наружний край и вогнутый внутренний край, в центре его находятся ворота почки, через которые открывается доступ в почечную пазуху с почечной лоханкой, ворнкообразный резервуар, образованный в почке путём слияния больших почечных чашечек, продолжающийся в мочеточник. В этом же месте в почку входят артерия и нервы; выходят вена и лимфатические сосуды.  Отличительная особенность почек млекопитающих - ясно выраженное деление на 2 зоны - внешнюю (корковую) красно-коричневого цвета и внутреннюю (мозговую), имеющую лилово-крачный цвет. Мозговое вещество почек образует 8- 18 пирамид; над пирамидами и между ними лежат слои коркового вещества - почечные (бертиниевы) столбы. Каждая пирамида имеет широкое основание, примыкающее к корковому веществу, и закруглённую и более узкую верхушку - почечный сосочек, обращённый в малую почечную чашечку. Последние открываются в большие почечные чашечки, из них моча поступет в почечную лоханку и далее в мочеточник.  В обеих почках человека около 2 млн. нефронов. Нефрон - это основная морфо-функциональная единица почек(рис.1)Каждый нефрон состоит из частей, имеющих характерное название и выполняющих различные функции. Начальная часть нефрона (боуменова капсула), чашеобразный слепой конец мочевого канальца, окружающий сосудистый клубочек из, приблизительно 50 артериальных капилляров (клубочек Шумлянского), образуя вместе с ним мальпигиево, или почечное, тельце (общее количество которых достигает 4 млн.). Стенка боуменовой капсулы состоит из внутреннего и наружного листков, между которыми находится щель - полость боуменовой капсулы, выстланная плоским эпителием. Внутренний листок прилегает к клубочку, наружний продолжается в проксимальный извитой мочевой каналец, переходящий в прямую часть проксимального канальца. За ним следует тонкий нисходящий участок петли Генле, спускающийся в мозговое вещество почек, где он, изгибаясь на 180 градусов, переходит в тонкий восходящий, а затем толстый восходящий каналец петли Генле, возвращающийся к клубочку. Восходящая часть петли переходит в дистальный (вставочный) отдел нефрона; он соединяется связующим отделом с расположенными в коре почек собирательными трубками. Они проходят корковое и мозговое вещество почек и, сливаясь вместе, образуют в сосочке беллиниевы протоки, открывающиеся в почечную лоханку.  В почках млекопитающих и человека имеется несколько типов нефронов, различающихся по месту расположения клубочков в коре почек и по фукнкции канальцев: субкортикальные, интеркортикальные и юкстамедуллярные. Клубочки субкортикальных нефронов находятся в поверхностной зоне коры почек, юкстамедуллярные - у границы коркового и мозгового вещества почек. Юкстамедуллярные нефроны имеют длинную петлю Генле, спускающуюся в почечный сосокчек и обеспечивающуювысокий уровень осмотического концентрирования мочи. Для почек характерно строгое зональное распределение различных типов канальцев. В коре почек находятся все клубочки, проксимальные и дистальные извитые канальцы, корковые отделы собирательных трубок. В мозговом веществе располагаются петли Генле и собирательные трубки. От расположения отдельных элементов нефрона зависит эффективность осморегулирующих функций почек.  Клетки каждого отдела канальцев отличаются по строению. Для кубического эпителия проксимального извитого канальца характерны многочисленный микроворсинки (щёточная каёмка) на поверхности, обращённой в просвет нефрона. На базальной поверхности клеточная оболочка образует узкие складки, междй которыми рсположены многочисленные митохондрии. В клетках прямого участка проксимального канальца менее выражены щёточная каёмка и складчатость базальной мембраны, мало митохондрий. Тонкий отдел петли Генле меньшего диаметра, выстлан плоскими клетками с малочисленными митохондриями. Характерная особенность эпителия дистального сегмента нефрона (толстый восходящий отдел петли Генле и дистальный извитой каналец со связующим отделом) - малое число микроворсинок на поверхности канальца, обращённой в просвет нефрона, ярко выраженная складчатость базальной плазматической мембраны и многочисленные крупные митохондрии с большим числом крист. В начальных отделах собирательных трубок чередуются светлые и тёмные клетки (в последних больше митохондрий). Беллиниевы трубки образованы высокими клетками с немногочисленными митохондриями.  Кровь в почки поступает из брюшной аорты по почечной артерии, распадающейся в ткани почек на междолевые, дуговые, междольковые артерии, от которых берут начало афферентные (приносящие) артериолы клубочков. В них артериола распадается на капилляры, затем они вноыь соединяются, образуя эфферентую (выносящую) артериолу. Афферентная артериола почти в 2 раза толще эфферентной, что способствует клубочковой фильтрации. Эфферентная артериола вновь распадается на капилляры, оплетающие канальца того же самого нефрона. Венозная кровь поступает в междольковые, дуговые и междолевые вены; они образуют почечную вену, впадающую в нижнюю полую вену. Кровоснабжение мозгового вещества почек обеспечивается прямыми артериолами. Почки иннервируют симпатичексие нейроны трёх нижних грудных и двух верхних поясничных сегментов спинного мозга; парасимпатические волокна идут к почкам от блуждающего нерва. Чувствительная иннервация почек в составе чревных нервов достигает нижних грудных и верхних поясничных узлов.  Функции почек.Основные функции почек (экскреторная, осморегулирующая, ионорегулирующая и др.) обеспечиваются процессами, лежащими в основе мочебразования: ультрафильтрацией жидкости и растворённых веществ из крови в клкубочках, обратным всасыванием частиц этих вешеств в кровь и секрецией некоторых веществ из крови в просвет канальца. В процессе эволюции почек фильтрационно-реабсорбционный механизм мочеобразования всё более преобладает над секреторным. Регуляция большинства выделения ионов у наземных позвоночных основана на изменении уровня реабсорбции ионов. Характерная особенность эволюции почек - увеличение объёма клубочковой фильтрации, которая у млекопитающих в 10-100 раз выше, чем у рыб и земноводных; резко возрастает интенсивность реабсорбции веществ клетками канальцев, т. к. отношение массы почек к массе тела почти одинаково у этих животных. Повышается функция почек по поддержанию стабильности состава веществ, растворённых в сыворотке крови. Развитие осморегулирующей функции почек тесно связано с типом азотистого обмена. У млекопитающих конечный продукт азотистого обмена - мочевина, осмотически высокоактивное вещество, для выведения которого необходимо значительное количество воды или способность осмотически концентрировать мочу. У человека в условиях покоя около 1/4 крови, выбрасываемой в аорту левым желудочком сердца, поступает в почечные артерии. Кровоток в почках мужчин составляет 1300 мл/мин, у женщин несколько меньше. При этом в клубочках из полости капилляров в просвет боуменовой капсулы происходит ультрафильтрация плазмы крови, обеспечивающая образование так назывемой первичной мочи, в которой практически нет белка. В просвет канальцев поступает около 120 мл жидкости в 1 минуту. Однако в обычных условиях около 119 мл фильтрата поступает обратно в кровь и лишь 1 мл в виде конечной мочи выводится из организма. Процесс ультрафильтрации жидкости обусловлен тем, что гидростатическре давление крови в капиллярах клубочка выше суммы коллоидноосмотического давления белков плазмы крови и внутрипочечного тканевого давления. Размер частиц, фильтруемых из крови, определяется величиной пор в фильтрующей мембране, что, по-видимому, зависит от диаметра пор центрального слоя базальной мембраны клубочка. В большинстве случаев радиус пор меньше 28 A, поэтому электролиты, низкомолекулярные неэлектролиты и вода свободно проникают в просвет нефрона, белки же практически не проходят в ультрафильтрат. Функциональное значение отдельных почечных канальцев в процессе мочеобразования неодинаково. Клетки проксимального сегмента нефрона всасывают (реабсорбируют) попавшие в фильтрат глюкозу, аминокислоты, витамины, большую часть электролитов. Стенка этого канальца всегда проницаема для воды; объём жидкости к концу проксимального канальца уменьшается на 2/3, но осмотическая концентрация жидкости остаётся той же, что и плазмы крови. Клетки проксимального канальца способны к секреции, т.е. выделению некоторых органических кислот (пенициллин, кардиотраст, парааминогиппуровая кислота, флуоресцеин и др.) и органических оснований (холин, гуанидин и др.) из околоканальцевой жидкости в просвет канальца. Клетки дистального сегмента нефрона и собирательных трубок участвуют в реабсорбции электролитов против значительного электрохимического градиента; некоторые вещества (калий, аммиак, ионы водорода) могут секретироваться в просвет нефрона. Проницаемость стенок дистального извитого канальца и собирательных трубок для воды увеличивается под влиянием антидиуретического гормона - вазопрессина, выделяемого задней долей гипофиза, вследствие чего происходит всасывание воды по осмотическому градиенту.  Осморегулирующая функция почек обеспечивает постоянство концентрации осмотически активных веществ в крови при различном водном режиме. При избыточном поступлении воды в организм выделяется гипотоническая моча, в условиях воды образуется осмотически концентрированная моча. Механизм осмотического разведения и концентрирования мочи был открыт в 50-60х гг. 20 века. В почках млекопитающих канальцы и сосуды мозгового вещества образуют противоточно-поворотную множительную систему. В мозговом веществе почек параллельно друг другу проходят нисходящие и восходящие отделы петель Генле, прямые сосуды, собирательные трубки. В результате активного транспорта натрия клетками восходящего отдела петли Генле соли натрия накапливаются в мозговом веществе почек и вместе с мочевиной удерживаются в этой зоне почек. При движении крови вниз, вглубь мозгового вещества, мочевина и соли натрия поступают в сосуды, а при обратном движении, к корковому веществу, выходят из них, удерживаясь в ткани (принцип противотока). При действии вазопрессина высокая осмотическая концентрация характерна для всех жидкостей (кровь, межклеточная и канальцевая жидкость) на каждом уровне мозгового вещества почек, исключая содержимое восходящих отделов петель Генле. Стенки этих канальцев относительно водонепроницаемы, а клетки активно реабсорбируют соли натрия в окружающую межклеточную ткань, вследствие чего осмотическая концентрация уменьшается. При отстутсвии вазопрессина стенка собирательных трубок водонепроницаема; при действии этого гормона она становится водопроницаемой и вода всасывается из просвета по осмотическому градиенту в окружающую ткань. В почке человека моча может быть в 4-5 раз осмотически концентрированнее крови. У некоторых обитающих в пустынях грызунов, имеющих особенно разитое внутреннее мозговое вещество почек, моча может в 18 раз превосходить по осмотическому давлению кровь.  Изучены молекулярные механизмы абсорбции и секреции веществ клетками почечных канальцев. При реабсорбции натрий пассивно поступает по электрохимическому градиенту внутрь клетки, движется по ней к области базальной плазматической мембраны и с помощью находящихся в ней "натриевых насосов" (Na/K ионнообменный насос, электрогенный Na насос и др.) выбрасывается во внеклеточную жидкость. Каждый из этих насосов угнетается специфическими ингибиторами. Применение в клинике мочегонных средств, используемых, в частности, при лечении отёков, основано на том, что они вляют на различные элементы системы реабсорции Na, K, в отличие от Na, клетка нефрона может не только реабсорбировать, но и секретировать. При секреции K из межклеточной жидкости поступает в клетку через базальную плазматическую мембрану за счёт работы Na/K насоса, а выделяется он в просвет нефрона через апикальную клеточную мембрану пассивно. Это обусловлено увеличением калиевой проницаемости мембран и высокой внутриклеточной концентрацией K. Реабсорбция различных веществ регулируется нервными и гормональными факторами. Всасывание воды возрастает под влиянием вазопрессина, реабсорбция Na увеличивается альдостероном и уменьшается натрийуретическим фактором, всасывание Ca и фосфатов изменяется под влиянием паратиреоидного гормона, тирокальциотинина и др. Молекулярные механизмы регуляции переноса различных веществ клеткой нефрона неодинаковы. Так, ряд гормонов (например, вазопрессин) стимулирует внутриклеточное образование из АТФ циклической формы АМФ, которая воспроизводит эффект гормона. Другие же гормоны (например, альдостерон) воздействуют на генетический аппарат клетки, вследствие чего в рибосомах усиливается синтез белков, обеспечивающих изменение переноса веществ через клетку канальца.  Важное значение имеет почка как инкреторный (внутрисекреторный) орган. В клетках её юкстагломерулярного аппарата, расположенного в области сосудистого полюса клубочка между приносящей и выносящей артериолами, происходит образование ренина, а возможно и эритропоэтина. Секреция ренина возрастает при уменьшении почечного артериального давления и снижении содержания Na в организме. В почках вырабатывается как эритропоэтин, так и, по-видимому, вещество, угнетающее образование эритроцитов; эти вещества участвуют в регуляции эритроцитарного состава крови. Установлено, что в почке синтезируются простагландины, вещества, меняющие чувствительность почечной клетки к некоторым гормонам (например, вазопрессину) и снижающее кровяное давление.  2. Энергетические вещества тканей почки.  Участие почки в гомеостазе белков, липидов и углеводов ранее недооценивали. Это участие не ограничено способностью к реабсорбции данных соединений или экскреции их избытка. В почке происходит образование и разрушение различных пептидных гормонов, циркулирующих в крови, образование глюкозы (глюконеогенез), превращение аминокислот, например глицина в серин, необходимый для синтеза фосфатидилсерина, который участвует в образовании и обмене плазматических мембран в различных органах  Энергетические вещества тканей почки универсальны для всех тканей организма и представлены белками, углеводами (глюкоза, гликоген и др.), липидами и основными интермедиатами и продуктами их метаболизма (лактат, пируват (рис.2) и др.). 1.3. Тканевая особенность включения энергетических веществ в биоэнергетику   Сложные физиологические процессы в почечной ткани протекают с постоянным потреблением большого количества энергии, выделяемой при метаболических реакциях. Не менее 8-10% всего поглощаемого в покое кислорода используется на окислительные процессы в почках. Потребление энергии на единицу массы в почках больше, чем в любом другом органе.  В корковом веществе почки ярко выражен аэробный тип обмена веществ. В мозговом веществе преобладают анаэробные процессы. Почка относится к органам, наиболее богатым ферментами. Большинство этих ферментов встречается и в других органах. Так, ЛДГ, АсАТ, АлАТ, глутаматдегидрогеназа широко представлены как в почках, так и в других тканях. Вместе с тем имеются ферменты, которые в значительной степени специфичны для почечной ткани. К таким ферментам прежде всего относится глицин-амидинотроансфераза (трансамидиназа). Данный фермент содержится в тканях почек и поджелудочной железы и практически отсутствует в других тканях. Глицин-амидинотрансфераза осуществляет перенос амидиновой группы с L-аргинина на глицин с образованием L-орнитина и гликоциамина:   L-аргинин + Глицин L-орнитин + Гликоциамин.   Эта реакция является начальным этапом синтеза креатина. Глицин- амидинотрансфераза была открыта еще в 1941 г., но только в 1965 г. У. Хорнер и соавт., а затем С.Р. Мардашев и А.А. Карелин (1967) впервые отметили диагностическую ценность определения фермента в сыворотке крови при заболевании почек. Появление данного фермента в крови может быть связано либо с поражением почек, либо с начинающимся или развившимся некрозом поджелудочной железы.  Наивысшая активность глицин-амидинотрансферазы в сыворотке крови наблюдается при хроническом пиелонефрите в фазе нарушения азотовыделительной функции почек, а далее в убывающем порядке следуют хронический нефрит с гипертензионным и отечно-гипертензионным синдромами и умеренным нарушением азотовыделительной способности, хронический нефрит с изолированным мочевым синдромом без нарушения азотовыделительной функции, остаточные явления острого диффузного гломерулонефрита.  Ткань почек относится к типу тканей с высокой активностью изоферментов ЛДГ1 и ЛДГ2. При изучении тканевых гомогенатов различных слоев почек обнаруживается четкая дифференциация изоферментных спектров ЛДГ. В корковом веществе преобладает активность ЛДГ1 и ЛДГ2, а в мозговом - ЛДГ5 и ЛДГ4. При острой почечной недостаточности в сыворотке крови повышается активность анодных изоферментов ЛДГ, т. е. изоферментов с высокой электрофоретической подвижностью (ЛДГ1 и ЛДГ2) .  Определённый интерес представляет также исследование изоферментов аланинаминопептидазы (ААП). Известны 5 изоферментов ААП. В отличие от изоферментов ЛГД изоферменты ААП определяются в различных органах не в виде полного спектра (5 изоферментов), а чаще как один изофермент. Так, изофермент ААП1 представлен главным образом в ткани печени, ААП2 – в поджелудочной железе, ААП3 – в почках, ААП4 и ААП5 – в различных отделах стенки кишки. При повреждении ткани почек изофермент ААП3 обнаруживается в крови и моче, что является специфическим признаком поражения почечной ткани.  Через фильтрующую мембрану клубочка практически не проходят альбумины и глобулины, но свободно фильтруются пептиды. Тем самым в канальцы непрестанно поступают гормоны, изменённые белки. Их расщепление имеет двоякое физиологическое значение – организм освобождается от физиологически активных веществ, что улучшает точность регуляции, а в кровь возвращаются аминокислоты, используемые для последующих синтезов. Имеющиеся данные указывают на возможность извлечения некоторых белков и полипептидов клетками нефрона из околоканальцевой жидкости и их последующего разрушения.  Таким образом, почка играет важную роль в расщеплении низкомолекулярных и изменённых (в том числе денатурированных) белков. Это объясняет значение почки в восстановлении фонда аминокислот для клеток органов и тканей, в быстром устранении из крови физиологически активных веществ и сохранении для организма их компонентов.  Почка не только потребляет глюкозу в процессе обмена, но и обладает способностью к значительной её продукции. В обычных условиях скорости двух последних процессов равны. Использование глюкозы для выработки энергии в почке составляет около 13% общего потребления кислорода почкой. Глюконеогенез происходит в коре почки, а наибольшая активность гликолиза характерна для мозгового вещества почки.  Почка обладает весьма активной системой образования глюкозы, её интенсивность на 1 г массы почки больше, чем в печени. При длительном голодании в почках образуется половина общего количества глюкозы, поступающей в кровь. Для этого используются органические кислоты, которые превращаются в глюкозу, являющуюся нейтральным веществом, что способствует одновременно регуляции pH крови. При алкалозе, напротив, снижен уровень глюконеогенеза из кислых субстратов. Зависимость скорости и характера глюконеогенеза от велечины pH является особенностью углеводного обмена почки по сравнению с печенью.  Превращение различных субстратов в глюкозу, поступающую в общий кровоток и доступную для утилизации в различных органах и тканях, свидетельствует о том, что почки присуща важная функция, связанная с участием в энергетическом балансе организма.  Почка оказалась основным органом окислительного катаболизма инозитола. В ней миоинозитол окисляется в ксилулозу и затем через ряд стадий в глюкозу. В тканях почки синтезируется фосфатидилинозитол, являющийся необходимым компонентом плазматических мембран. Синтез глюкуроновой кислоты имеет большое значение для образования гликозаминогликанов, содержание которых высоко в межклеточной ткани внутреннего мозгового вещества почки и столь существенно для процесса осмотического разведения и концентрирования мочи.  Участие в обмене липидов связано с тем, что свободные жирные кислоты извлекаются почкой из крови и их окисление обеспечивает в значительной степени работу почки. Так как свободные жирные кислоты связаны в плазме с альбумином, то они не фильтруются, а их поступление в клетки нефрона происходит со стороны межклеточной жидкости. Эти соединения окисляются в большей степени в коре почки, чем в её мозговом веществе. В почке образуются триацилглицерины. Свободные жирные кислоты быстро включаются в фосфолипиды почки, играющие важную роль в выполнении различных транспортных процессов. Роль почки в липидном обмене состоит в том, что в её ткани свободные жирные кислоты включаются в состав триацилглицеринов и фосфолипидов и в виде этих соединений поступают в циркуляцию.  2.Экспериментальная часть.  2.1. Методы и материал исследования.   Исследования тканей почки проводились на половозрелых 7 месячных белых крысах генетической линии Вистар женского пола(2шт.) и мужского (1 шт.) (табл.1).   Табл.1 Материал исследования |№ п/п |Масса животного, г |Масса почки, г | |1 |234,0 (9,8 |1,05(0,08 | |2 |249,7(9,8 |0,76(0,08 | |3 |214,9(9,8 |0,70(0,08 | |Среднее значение |232,9 |0,84 |   Метод 1. Определение глюкозы.  Глюкоза определялась редуктометрическим феррицианидным методом. Принцип метода состоит в следующем: белки ткани осаждаются гидроксидом кадмия. Глюкоза, содержащаяся в безбелковом фильтрате, окисляется в щелочной среде феррицианидом калия (красная кровяная соль), избыток которого определяется иодометрически. Образовавшийся ферроцианид калия связывается сернокислым цинком, который входит в состав “тройного раствора”[6].  Метод 2. Определение гликогена.  Стадия 1. Выделение гликогена. Принцип метода заключается в следующем: ткань подвергается десмолизу в 30%-м гидроксиде калия (заменять на гидроксид натрия нельзя, так как при этом образуются плохо растворимые в спирте натриевые мыла и сода – это затрудняет последующую очистку осадка гликогена). Из десмолизата гликоген осаждается спиртом.  Стадия 2. Осаждённый гликоген подвергается гидролизу, и образовавшаяся глюкоза определяется редуктометрическим феррицианидным методом (метод 1) [6].  Метод 3. Совместное определение пирувата и лактата.  Стадия 1. Построение калибровочного графика для определения пирувата. Составляется ряд стандартных растворов пирувата (включая контроль – С=0). Строится график зависимости оптической плотности растворов от концентрации пирувата в растворах.  Стадия 2. Построение калибровочного графика для определения лактата. Составляется ряд стандартных растворов лактата (включая контроль – С=0). Строится график зависимости оптической плотности растворов от концентрации лактата в растворах.  Стадия 3. Определение количества пирувата в тканях почки колориметрическим методом с 2,4-динитрофенилгидразином (по Умбрайту). Принцип метода состоит в том, что пируват взаимодействует в кислой среде с 2,4-динитрофенилгидразином. Образующийся в результате реакции 2,4- динитрофенилгидразид пировиноградной кислоты в отличие от гидразидов других кетокислот хорошо растворим в толуоле, при помощи которого его экстрагируют из реакционной смеси и создают щелочную среду, в которой он приобретает коричнево-красную окраску. Определение проводят колориметрически.  Стадия 4. Определение количества лактата в тканях почки методом с использованием п-оксидифенила (по Баркеру и Саммерсону). Принцип метода. Молочная кислота кипячением с конц. серной кислотой превращается в ацетальдегид, который при конденсации с п-оксидифенилом образует 1,1-ди- (оксидифенил)-этан. Этот продукт конденсации в растворе серной кислоты окисляется в продукт фиолетового цвета. Серная кислота действует здесь как конденсирующий агент и окислитель. Интенсивность окраски пропорциональна количеству ацетальдегида, а, следовательно, и количеству лактата. Метод позволяет определять лактат в количествах от 0,03 до 0,2 мкмоль (2,7 – 18,0 мкг) в пробе. 2.2. Результаты и их обсуждение  При проведении эксперимента были получены следующие результаты (табл.2):   Табл.2 Содержание метаболитов в тканях почки в мг%. |Метаболит |Содержание метаболита | | |экспериментальное |литературное | |глюкоза |27,9(1,6 |54(6 [7] | |гликоген |48,1(2,2 |50,4(3,5 [8] | |лактат |35,95 |32,4(1,8 [9] | |пируват |1,93(0,19 |2,64(0,1 [10] |   Приведём калибровочные графики для определения содержания пирувата и лактата:   В источнике [7] содержание глюкозы в тканях почки определялось о- толуидиновым методом, сущность которого заключается в ферментативном окислении глюкозы до глюконовой кислоты с образованием перекиси водорода, которая затем определялась с помощью о-толуидина. Этот метод более специфичен для определения глюкозы чем феррицианидный, так как исключает практически все побочные процессы.  В источнике [8] для определения гликогена ткани почек для исследования брали прижизненно под местной новокаиновой анестезией. Количество общего гликогена определяли по методу Пфлюгера. Количество истинной глюкозы определяли по методу Нельсона. Эти методы более специфичны. Этим можно объяснить расхождение в результатах по гликогену.  В источнике [10] в основу определения пирувата положен ферментативный метод. Он основан на непрямом определении количества оксалоацетата, синтезируемого в ходе ферментативной реакции из пирувата и двуокиси углерода по окислению НАДН в присутствии избытка малатдегидрогеназы. Убыль НАДН регистрировали спектрофотометрически. Этим можно объяснить расхождение в результатах по пирувату, так как метод более специфичен. Вид калибровочного графика позволяет говорить о систематической ошибке, однако, расхождение в литературных и экспериментальных данных невелико.  В источнике [9] в основу определения содержания лактата положен метод Хохорста. Принцип метода. В присутствие лактатдегидрогеназы лактат переходит в пируват, причём связывание образуется в ходе реакции пирувата с гидразин-глициновым буфером, что способствует полному окислению лактата.  Образовавшееся количество НАДН эквимолярно количеству окисленного лактата. Регистрацию проводили спектрофотометрически. Выводы   В ходе экспериментальной работы были получены результаты, которые были сопоставлены с литературными данными. К сожалению, не удалось найти статьи, в которой был бы использован феррицианидный метод (во всех работах использовались разнообразные ферментативные методы), а также не во всех работах использовались крысы – линии Вистар (в источнике [7] опыты проводились на беспородных крысах обоих полов). Поэтому, литературные данные могут быть не достаточно точными по отношению к данной линии. Однако, результаты, полученные в опытах, в основном совпали с литературными данными, кроме глюкозы. По-видимому в опыте с определением глюкозы в почке была допущена грубейшая ошибка. Но результаты можно считать, на мой взгляд, приемлемыми.  Список использованной литературы:   1. Берёзов Т.Т., Коровкин Б.Ф., Биологическая химия – М., Медицина,  1998 г.  2. Физиология человека /Под ред. Смирнова В.М./ – М., Медицина,2001 г.  3. Общий курс физиологии человека и животных /Под ред. Ноздрачёва А.Д./  – М., Высшая школа, 1991 г.  4. Страйер Л., Биохимия, – М., Мир, 1984 г.  5. Биохимия человека, Марри Р., Греннер Д., Мейес П., Родуэлл В., – М.,  Мир, 1993 г.  6. Пандакова В.Н., Цупило И.А., Лабораторный практикум по обмену  веществ, – Донецк, ДонГУ, 1990 г.  7. Украинский биохимический журнал, 1986 г., т. 58, №6, “Гликолиз в  почках крыс в ранний период после ишемии и при введении ингибиторов  кальмодуллина – АМФ и НАД ”, И.З.Тамарина, Г.В. Лысцова, В.И.  Чумаков.  8. Бюллетень экспериментальной биологии и медицины, 1979 г., т. 87,  №6; “Измерение активности ключевых ферментов глюконеогенеза в печени  и почках крыс при действии субэкстремальных и экстремальных  факторов”, Панин Е.  9. Пируват и лактат в животном организме /под ред. Островского/ –  Минск, 1984 г.  10. Биохимия, т. 35, вып. 1, 1970 г., “Глюконеогенез и гликолиз в почках  крыс нормальных и с аллоксановым диабетом”, В.С. Ильин, М.Д.  Балябина.  11. Большая Советская Энциклопедия, том 1, 3, 4, 15, 20, 21, М., 1975  12. Физиология почки, под ред. Ю.В. Наточина, Л., 1972  13. Основы нефрологии, под ред. Е.М. Тареева, М., 1972

zenslim.ru